The leptin-like effects of 3-d peripheral administration of a melanocortin agonist are more marked in genetically obese Zucker (fa/fa) than in lean rats.

نویسندگان

  • Philippe Cettour-Rose
  • Françoise Rohner-Jeanrenaud
چکیده

The effects of a 3-d peripheral administration of an alpha-MSH agonist, MTII, on body weight and the expression of uncoupling proteins (UCPs) and carnitine palmitoyltransferase-1 were determined in lean and genetically obese fa/fa rats by comparing MTII-treated animals with two different control groups, one being ad libitum fed, the other pair-fed to the amount of food consumed by MTII-treated rats. MTII treatment of lean and obese rats lowered food intake and body weight, the effects being more marked in obese than in lean rats. In both groups, MTII administration suppressed the increased plasma FFA levels brought about by food restriction. In lean rats, MTII prevented the decrease in brown adipose tissue UCP1, UCP2, and UCP3 expression and muscle UCP3 occurring during food restriction. In obese animals, MTII markedly increased brown adipose tissue (7-fold) and muscle (2.5-fold) UCP3 expression. The decrease in liver carnitine palmitoyltransferase-1 elicited by food restriction in lean and obese rats was prevented by MTII administration. In summary, the effects of MTII resemble those of leptin and are more marked in obese than in lean animals, in keeping with their reported reduced endogenous melanocortin tone. Melanocortin agonists may be useful in the treatment of obesity associated with impaired leptin signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent effects of intracerebroventricular and peripheral leptin administration on feeding and hypothalamic neuropeptide Y in lean and obese (fa/fa) Zucker rats.

Leptin inhibits feeding and decreases body weight. It may act partly by inhibiting hypothalamic neurons that express neuropeptide Y, a powerful inducer of feeding and obesity. These neuropeptide Y neurons express the Ob-Rb leptin receptor and are overactive in the fatty (fa/fa) Zucker rat. The fa mutation affects the extracellular domain of the leptin receptor, but its impact on leptin action a...

متن کامل

Impaired biliary lipid secretion in obese Zucker rats: leptin promotes hepatic cholesterol clearance.

Human obesity is associated with elevated plasma leptin levels. Obesity is also an important risk factor for cholesterol gallstones, which form as a result of cholesterol hypersecretion into bile. Because leptin levels are correlated with gallstone prevalence, we explored the effects of acute leptin administration on biliary cholesterol secretion using lean (FA/-) and obese (fa/fa) Zucker rats....

متن کامل

Bromocriptine administration reduces hyperphagia and adiposity and differentially affects dopamine D2 receptor and transporter binding in leptin-receptor-deficient Zucker rats and rats with diet-induced obesity.

BACKGROUND The dopamine (DA) D(2) receptor (D2R) agonist bromocriptine (BC) decreases body fat in animal and human models and increases lean muscle mass, improves glucose intolerance and insulin resistance, and reduces triglycerides and free fatty acids. We have previously shown a negative correlation between D2R and body weight in obese individuals and in rodents, and that chronic food restric...

متن کامل

Brown adipose tissue thermogenesis precedes food intake in genetically obese Zucker (fa/fa) rats.

In Sprague-Dawley rats, brown adipose tissue (BAT) thermogenesis occurs in an episodic ultradian manner (BAT on-periods) as part of the basic rest-activity cycle (BRAC). Eating occurs approximately 15min after the onset of BAT on-periods. Zucker obese (fa/fa) rats eat larger less frequent meals than control rats. In chronically instrumented conscious unrestrained Zucker obese rats we examined u...

متن کامل

Obesity is associated with a decreased leptin transport across the blood-brain barrier in rats.

Leptin exerts important effects on the regulation of food intake and energy expenditure by acting in the brain. Leptin is secreted by adipocytes into the bloodstream and must gain access to specific regions in the brain involved in regulating energy balance. Its action is mediated by interaction with a receptor that is mainly expressed in the hypothalamus but is also present in other cerebral a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Endocrinology

دوره 143 6  شماره 

صفحات  -

تاریخ انتشار 2002